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Abstract

End-to-end autonomous driving (E2EAD) systems, which
learn to predict future trajectories directly from sensor
data, are fundamentally challenged by the inherent spatio-
temporal imbalance of trajectory data. This imbalance
creates a significant optimization burden, causing mod-
els to learn spurious correlations instead of causal infer-
ence, while also prioritizing uncertain, distant predictions,
thereby compromising immediate safety. To address these
issues, we propose ResAD, a novel Normalized Residual
Trajectory Modeling framework. Instead of predicting the
future trajectory directly, our approach reframes the learn-
ing task to predict the residual deviation from a determin-
istic inertial reference. The inertial reference serves as
a counterfactual, forcing the model to move beyond sim-
ple pattern recognition and instead identify the underlying
causal factors (e.g., traffic rules, obstacles) that necessi-
tate deviations from a default, inertially-guided path. To
deal with the optimization imbalance caused by uncertain,
long-term horizons, ResAD further incorporates Point-wise
Normalization of the predicted residual. It re-weights the
optimization objective, preventing large-magnitude errors
associated with distant, uncertain waypoints from dominat-
ing the learning signal. Extensive experiments validate the
effectiveness of our framework. On the NAVSIM bench-
mark, ResAD achieves a state-of-the-art PDMS of 88.6 us-
ing a vanilla diffusion policy with only two denoising steps,
demonstrating that our approach significantly simplifies the
learning task and improves model performance. The code
will be released.

1. Introduction
Conventional autonomous driving systems rely on a mod-
ular pipeline of perception, prediction, and planning com-
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Figure 1. (a) Comparison of trajectory distributions under differ-
ent modeling strategies. Raw trajectories exhibit significant mean
drift and increasing variance over the prediction horizon. Tra-
jectory Residual Modeling centers the distribution around zero.
Point-wise Residual Normalization further stabilizes variance
for a simpler learning objective. (b) Comparisons between ex-
isting methods and the proposed ResAD. Instead of predicting the
trajectory directly, ResAD obtains an inertial reference (green ar-
row) as a counterfactual baseline. This forces the model to learn
not what to do, but why it must deviate from this baseline, ef-
fectively linking actions (i.e., residuals) to their causal sources,
like obstacles, rather than to statistical correlations.

ponents [7, 25, 28]. This cascaded design is prone to er-
ror propagation, leading to suboptimal or unsafe driving.
In response to these limitations, End-to-End Autonomous
Driving (E2EAD) has emerged as a compelling alterna-
tive [2, 11]. E2EAD reframes the driving problem by learn-
ing a direct mapping from raw sensor inputs to a future driv-
ing trajectory, from which control commands are derived,
all within a single, unified framework [4, 14, 32].

Recent years have witnessed extensive research into
E2EAD methods, focusing on developing more effective
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representations [3, 16, 31], enhancing sensor fusion tech-
niques [5, 12, 27, 36], and designing advanced architec-
tures [15, 30, 34]. However, these existing methods are all
attempting to answer the same question: “What is the fu-
ture trajectory?” We argue this approach is inherently lim-
ited. As shown in Fig.1(a), the raw trajectory data exhibits a
spatio-temporal non-uniformity, which leads to two critical
issues that hinder real-world reliability and safety: Causal
Confusion and the Planning Horizon Dilemma.

Causal Confusion. The immense burden of mapping
high-dimensional sensor data directly to a trajectory may
cause the model to find shortcuts, relying on spurious cor-
relations instead of the underlying causal logic governing
safe driving [13, 19, 23]. For instance, a model might learn
to associate braking with a lead vehicle’s brake lights but
fail to understand the red light causing that vehicle to stop,
leading it to dangerously follow the car through an inter-
section. Planning Horizon Dilemma. Trajectory data be-
comes more uncertain over longer horizons. Consequently,
predictions for these distant waypoints often diverge signifi-
cantly from the eventual ground truth, resulting in large loss
values during training [2, 17]. This skews the optimization
process, forcing the model to prioritize large, unpredictable
long-term errors over the precision of the critical near-term
path essential for immediate collision avoidance.

To address these challenges, we propose ResAD, a Nor-
malized Residual Trajectory Modeling framework for End-
to-End Autonomous Driving. As shown in Fig. 1 (b), our
core idea is to decompose the complex prediction task into
two distinct components: (1) a deterministic physics-based
baseline, the inertial reference, obtained by extrapolating
the vehicle’s current state to represent its default trajectory
in the absence of active control; and (2) a learned resid-
ual, representing the necessary deviations from the iner-
tial reference. By focusing specifically on deviations rather
than the entire trajectory, ResAD shifts the learning objec-
tive from “What is the future trajectory?” to “Why must
the trajectory change?”. This shift encourages the model
to understand underlying causal factors (e.g., traffic rules,
obstacles) instead of exploiting spurious correlations. To
further mitigate the adverse effects of spatial scale varia-
tions during optimization, we conduct Point-wise Resid-
ual Normalization on the residuals. This technique pre-
vents high-magnitude residuals at certain trajectory points
from dominating the learning signal, ensuring that numer-
ically small yet critically important adjustments are prop-
erly captured. Additionally, we strategically perturb the
ego-vehicle’s state, generating diverse inertial references to
counteract planning errors arising from sensor inaccuracies
and guide the model toward a broader spectrum of high-
quality trajectories. By embedding the fundamental phys-
ical prior of inertia into the model’s architecture, ResAD
significantly simplifies the learning task, enabling more nu-

anced and precise driving behaviors. In summary, our con-
tributions are as follows:
• We revisit the future-trajectory-prediction paradigm in

E2EAD, and contend that the spatio-temporal non-
uniformity of raw trajectory data leads to causal confu-
sion and the planning horizon dilemma. This encourages
a paradigm shift, moving from predicting the trajectory
itself to modeling the reasons for its deviation.

• We propose ResAD, an E2EAD framework utilizing the
Normalized Residual Trajectory Modeling. It first ob-
tains an inertial reference by extrapolating the vehicle’s
current state and then learns to predict the residual, i.e.,
the necessary deviations, relative to it. We further ap-
ply Point-wise Residual Normalization to the residuals,
which prevents the optimization process from being dom-
inated by long-horizon uncertainties.

• Extensive experiments and analyses validate the effec-
tiveness of the proposed ResAD. On the NAVSIM bench-
mark, our method achieves state-of-the-art performance
with scores of 88.6 for PDMS and 85.5 for EPDMS.

2. Related Work

2.1. End-to-End Autonomous Driving
End-to-end autonomous driving (E2EAD) seeks to over-
come the limitations of traditional modular pipelines,
such as error accumulation and inter-module information
loss [13, 30, 35]. Pioneering works like UniAD [11] in-
troduced a planning-oriented architecture that jointly opti-
mizes perception and forecasting to mitigate error propa-
gation. VAD [16] further streamlined the pipeline with a
fully vectorized scene representation, enabling the enforce-
ment of explicit, instance-level safety constraints. More re-
cently, generative models have become a new frontier in
E2EAD research [6, 26, 38]. GoalFlow [33] introduces a
goal-conditioned generative model that first selects an opti-
mal goal point based on scene context and then uses Flow
Matching to efficiently generate high-quality trajectories to-
wards it. Despite these advances, existing methods predom-
inantly rely on the direct prediction of future trajectories.
In this work, we depart from this paradigm and introduce
Normalized Residual Trajectory Modeling. Our method
formulates a trajectory by decomposing it into a physically-
based inertial reference and a learnable residual, offering
a more structured and interpretable approach to trajectory
representation.

2.2. Multimodal Planning
Most E2EAD systems produce a single, deterministic tra-
jectory, an approach that struggles with the inherent diver-
sity of real-world driving scenarios. To address this, sev-
eral works have explored multimodal planning. VADv2 [3]
proposes a probabilistic planning framework that outputs
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Figure 2. The proposed ResAD framework. Multi-view images and LiDAR data are first processed and fused by a feature interaction
encoder. We generate an inertial reference from the ego-vehicle’s state and perturb it into a cluster to ensure robustness and enable multi-
modal predictions. Finally, diffusion decoders, conditioned on this reference cluster, merge the encoded features via cross-attention to
output the planned trajectories.

a distribution of future trajectories, which can be sampled
to produce a diverse set of behaviors. The Hydra-MDP
series [20, 22] employs policy distillation to select mul-
tiple trajectories from a vocabulary guided by an expert.
GTRS [24] adopts a different strategy, scoring a set of pre-
generated trajectories to ensure both diversity and safety.
DiffusionDrive [26] highlights the challenge of mode col-
lapse in generative-based models, addressing it by anchor-
ing trajectory generation to a fixed cluster vocabulary. How-
ever, these methods fundamentally rely on a static, prede-
fined vocabulary. This makes them both inefficient and re-
strictive, forcing them to evaluate irrelevant options while
being unable to generate truly optimal trajectories outside
the discrete set. Differently, ResAD benefits from the
unique trajectory modeling strategy that enables it to di-
rectly denoise from the Gaussian noise, yielding superior,
context-aware multimodal trajectories.

3. Methodology

3.1. Preliminaries

E2EAD aims to learn a unified policy, π, that directly
maps raw sensor inputs, O, to a sequence of waypoints,
τ = {(xt, yt)}

Tf

t=1, where Tf denotes the planning horizon,
and (xt, yt) is the predicted future location of each way-
point at time t. We construct the proposed ResAD using a
vanilla diffusion [10, 29] framework. The diffusion model
defines a Markovian chain of diffusion forward process q
by gradually adding noise to sample data z0, over a series

of T timesteps, which can be formulated as:

q(zt|z0) = N (zt|
√
ᾱtz0, (1− ᾱt)I), (1)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs. The hyperparame-
ters βt controlling the amount of noise added at each step.
As t −→ T , zT approaches a pure Gaussian noise distri-
bution. We train the denoise model πθ to predict z0 from
zi with the guidance of conditional information c, where
θ are the trainable parameters. At the inference stage, the
trained network is used to iteratively denoise a pure noise
zT ∼ N (0, I) to produce a clean data sample x0, which is
defined as:

pθ (z0 | c) =
∫

p (zT )

T∏
i=1

pθ (zi−1 | zi, c) dz1:T . (2)

In this work, we aim to solve the E2EAD via the diffusion
model. Instead of directly generating the future trajectory
points, we define the data samples as a set of normalized
residuals.

3.2. Normalized Residual Trajectory Modeling
As illustrated in Fig. 2, ResAD takes multi-view images
and LiDAR point clouds as input, which are fused by a
Transfuser-style encoder. From the ego-vehicle state, we
generate an inertial reference. ResAD then perturbs this
reference into a cluster to ensure robustness to state noise
and to enable multi-modal predictions. The Diffusion De-
coders employ cross-attention to merge the encoded fea-
tures, using the inertial reference cluster as a condition to
guide the training.
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Trajectory Residual Modeling. The core idea of ResAD
is to reframe trajectory prediction as a simpler, more inter-
pretable learning problem. Instead of predicting the entire
future trajectory from scratch, the model learns to predict
the necessary correction to a simple, physics-based base-
line. This baseline is an inertial reference trajectory, extrap-
olated from the ego-vehicle’s current status using a constant
velocity model. This reframing compels the model to learn
the control interventions required to deviate from the de-
fault path, focusing its capacity on the causal elements of
driving.

Let the ego-vehicle’s velocity be v0 = (vx,0, vy,0) and
its position be p0 = (x0, y0) at the current time t = 0. The
inertial reference trajectory τref for future timesteps ti in the
prediction horizon Tf = {t1, t2, ..., tN} is calculated as:

pti = p0 + v0 ·∆ti. (3)

This reference τref represents the path the vehicle would fol-
low with no control inputs. We define the trajectory residual
r as the point-wise difference between the ground-truth tra-
jectory τgt and the reference trajectory τref :

r = τgt − τref . (4)

This residual rquantifies the precise corrections a human
driver applied to navigate the environment. The learning ob-
jective of ResAD is thus to predict this residual, effectively
capturing the driver’s decision-making process. Point-wise

Residual Normalization. A key challenge in trajectory
prediction is the scale variance of coordinates across the
time horizon. Points further in the future have numerically
larger values, which can cause the optimization to be domi-
nated by far-field errors, neglecting the fine-grained, safety-
critical adjustments required in the near field. As shown
in Fig. 1(a), while residual modeling mitigates this by fo-
cusing on deviations, the scale issue within the residuals
themselves persists. We propose Point-wise Residual Nor-
malization (PRNorm) to resolve this.

Given a residual trajectory r, which is a sequence of Tf

displacement vectors {r1, r2, . . . , rTf
}, where each rt =

(rxt , r
y
t ) is a 2D vector. A standard min-max scaling is

performed on a component-wise basis for each dimension
d ∈ {x, y}. The extremal values, rdmin and rdmax are pre-
computed across all timesteps and all trajectories in the en-
tire training dataset:

rdmin = min
j,t

(rdj,t), rdmax = max
j,t

(rdj,t), (5)

where j indexes trajectories in the training set and t indexes
the timestep. These values define the tightest axis-aligned
bounding box for the residual. To provide fine-grained con-
trol over the final feature distribution, we introduce a hyper-
parameter γ > 0. This parameter defines the bounds of the

symmetric output interval [−γ, γ]. The complete transfor-
mation of PRNorm for each component rdt of every vector
rt is given by:

r̃dt = 2γ

(
rdt − rdmin

rdmax − rdmin + ϵ0

)
− γ. (6)

The small constant ϵ0 is added to the denominator to ensure
numerical stability. Through this, we can get the normalized
residual r̃ = PRNorm(r).

Inertia Reference Perturbation. Driving is an inherently
multi-modal task. Most methods depend on a fixed trajec-
tory vocabulary, where most options are irrelevant to the
current scene, causing inefficiency. ResAD, circumvents
this issue through Trajectory Residual Modeling, which
generates multi-modal trajectories by perturbing its Inertial
Reference. This approach is doubly beneficial. It forces
the model to learn resilience against noise from ego-sensors
like GPS and IMU. On the other hand, it creates a set of
intent hypotheses by generating a cluster of slightly varied
inertial references. The network then produces a full trajec-
tory for each hypothesis, naturally yielding a diverse set of
context-relevant paths.

Specifically, we introduce stochastic perturbations di-
rectly into the initial velocity v0. We generate K distinct
perturbation vectors δv,k by sampling from a zero-mean
multivariate Gaussian distribution:

δv,k ∼ N (0,Σ) for k = 1, . . . ,K. (7)

Here, the covariance matrix Σ = diag(σ2
vx, σ

2
vy) governs

the variance of the perturbations along the longitudinal and
lateral axes, respectively. These hyperparameters effec-
tively define the exploration scope of our model’s initial
hypotheses. Each perturbation is additively fused with the
original velocity vector to forge K unique, perturbed ini-
tial states. By propagating each of these perturbed velocity
vectors v′

0,k through the constant velocity model Eq. 3, we
generate a set of K distinct inertial references {τref, k}Kk=1

and corresponding residuals:

v′
0,k = v0 + δv,k,

{rk}Kk=1 = {τgt − τref, k}Kk=1.
(8)

Training and Inference. In training, adding Gaussian
noise to the residual cluster normalized by PRNorm:

z
(i)
k =

√
ᾱir̃k +

√
1− ᾱiϵ, ϵ ∼ N (0, I), (9)

where r̃k = PRNorm(rk). The diffusion decoder fθ takes
K noisy normed trajectory residuals to generate denoised
residuals {r̂k}Kk=1:

{r̂k}Kk=1 = fθ({z(i)
k }Kk=1, c), (10)
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Table 1. Performance on the NAVSIM v1 NAVTEST Benchmark.

Method Input Backbone NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ PDMS ↑
LTF [7] C Resnet-34 97.4 92.8 79.0 92.4 100 83.8
Transfuser [7] C & L Resnet-34 97.7 92.8 79.2 92.8 100 84.0
UniAD [11] C Resnet-34 97.8 91.9 78.8 92.9 100 83.4
VADv2 [3] C & L Resnet-34 97.2 89.1 76.0 91.6 100 80.9
PARA-Drive [32] C Resnet-34 97.9 92.4 79.3 93.0 99.8 84.0
DRAMA [37] C & L Resnet-34 98.0 93.1 80.1 94.8 100 85.5
Hydra-MDP∗ [22] C & L Resnet-34 98.3 96.0 78.7 94.6 100 86.5
Hydra-MDP++∗ [20] C Resnet-34 97.6 96.0 80.4 93.1 100 86.6
GoalFlow∗ [33] C & L Resnet-34 98.3 93.8 79.8 94.3 100 85.7
ARTEMIS [9] C & L Resnet-34 98.3 95.1 81.4 94.3 100 87.0
DiffusionDrive [26] C & L Resnet-34 98.2 96.2 82.2 94.7 100 88.1
WoTE [21] C & L Resnet-34 98.5 96.8 81.9 94.9 99.9 88.3

ResAD C & L Resnet-34 98.0 97.3 82.5 94.2 100 88.6

“C”: Camera, “L”: LiDAR. The best and second-best scores are highlighted in bold and underlined, respectively. * For fair comparison, we use the official
scores of versions with the same backbone.

where c represents the conditional information. Note that c
is composed of query features extracted from the encoder
and the corresponding timestep embedding. Crucially, c
also incorporates unique positional encoding features de-
rived from each of the perturbed inertial references. These
encodings are essential for the model to distinguish between
the different intent hypotheses and subsequently generate a
diverse set of trajectories. The diffusion loss is computed
as:

Ldiff =

K∑
k=1

Lrec(r̂k, rk), (11)

here, Lrec can be a simple L1 loss or MSE loss.
During inference, the denoising process starts with

Kinfer Gaussian noise to generate residuals. We take
2 timesteps to get the final predictions {r̂k}Kinfer

k=1 by
DDIM [29]. Then the predicted residuals are added to the
corresponding perturbed inertia reference to get the multi-
modal trajectory {τ̂k}Kinfer

k=1 .

3.3. Multimodal Trajectory Ranker
Inspired by VADv2 [3] and Hydra-MDP [22], we develop
a Trajectory Ranker to select the optimal trajectory from
multiple modalities by using the output from the planning
model. Given a set of trajectory candidates vk, where k
is the vocabulary size, we feed them into a Transformer
to facilitate interaction with the perception representations,
Eenv , which can be expressed as follows:

V = PosEmb(vk),

V ′ = Transformer(Q = V,K, V = Eenv) + E.
(12)

PosEmb(·) denotes the position embedding, and ego status
E is embedded into the transformer output. Subsequently,

the latent vector V ′ is fed into a set of MLP heads to predict
the score {Ŝm

i |i = 1, ..., k}|M |
m=1 for each metric m ∈ M

and the i-th trajectory, where M represents the set of met-
rics used in PDMS or EPDMS. The ranker is trained with
the ground truth score {Sm

i |i = 1, ..., k}|M |
m=1 to distill the

knowledge from the rule-based planner and the ground truth
waypoints as follows:

Lranker =

k∑
i=1

yi log(Ŝim
i ) +

∑
m,i

BCE(Sm
i , Ŝm

i ), (13)

where yi = e−(τgt−τ̂i)
2∑k

j=1 e−(τgt−τ̂j)
2 . During inference, we com-

pute scores for the outputs of the planning head and select
the trajectory with the highest weighted score as the final
output.

4. Experiments

4.1. Benchmark

We evaluate the proposed ResAD on the NAVSIM v1 [8]
and NAVSIM v2 [1] benchmark. NAVSIM is built upon
the real-world NuPlan dataset [18] and exclusively fea-
tures relevant annotations and sensor data sampled at 2 Hz.
The NAVSIM dataset contains two parts: NAVTRAIN and
NAVTEST, including 1192 and 136 scenarios respectively,
used for trainval and test.

NAVSIM v1. In this benchmark, each predicted trajectory
is sent to a simulator, which validates the driving metrics
in the corresponding environment. The planning capabili-
ties of models are assessed using the PDM score (PDMS),
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Table 2. Performance on the NAVSIM v2 NAVTEST Benchmark with Extended Metrics.

Method NC ↑ DAC ↑ DDC ↑ TL ↑ EP ↑ TTC ↑ LK ↑ HC ↑ EC ↑ EPDMS ↑
Ego Status MLP 93.1 77.9 92.7 99.6 86.0 91.5 89.4 98.3 85.4 64.0
Transfuser [7] 96.9 89.9 97.8 99.7 87.1 95.4 92.7 98.3 87.2 76.7
HydraMDP++ [20] 97.2 97.5 99.4 99.6 83.1 96.5 94.4 98.2 70.9 81.4
DriveSuprim [35] 97.5 96.5 99.4 99.6 88.4 96.6 95.5 98.3 77.0 83.1
ARTEMIS [9] 98.3 95.1 98.6 99.8 81.5 97.4 96.5 98.3 - 83.1
DiffusionDrive [26] 98.2 95.9 99.4 99.8 87.5 97.3 96.8 98.3 87.7 84.5

ResAD 97.8 97.2 99.5 99.8 88.2 96.9 97.0 98.4 88.2 85.5

which is calculated as follows:

PDMS = NC×DAC× (5× TTC+ 2× C+ 5× EP)

12
,

(14)
where the sub-metrics NC, DAC, TTC, C, EP represent the
No At-Fault Collisions, Drivable Area Compliance, Time to
Collision, Comfort, and Ego Progress.

NAVSIM v2. In NAVSIM v2, a new Extended PDM Score
(EPDMS) is introduced in NAVSIM v2 , which can be for-
mulated as:

EPDMS = NC×DAC×DDC× TL×
(5× TTC+ 2× C+ 5× EP + 5× LK + 5× EC)

22
.

(15)

The extended sub-metrics DDC, TL, LK, and EC corre-
spond to the Driving Direction Compliance, Traffic Lights
Compliance, Lane Keeping Ability, and Extended Comfort.

4.2. Implementation Details
For fair comparison, our model adopts an identical percep-
tion module and ResNet-34 backbone as Transfuser [7].
The model takes two types of input: three forward-facing
camera images, which are individually cropped, down-
scaled, and then concatenated into a single 1024×256 ten-
sor; and a rasterized BEV representation of the LiDAR
point cloud. ResAD is equipped with 2 cascaded diffusion
layers. We set the mode number Ktrain = 20 for training
and Kinfer = 200 for testing. The model is trained from
scratch on the NAVTRAIN split for 100 epochs using the
DDPM, with a timestep T of 1000. The training is dis-
tributed across 8 NVIDIA L20 GPUs, with a total batch
size of 512, and is optimized using AdamW. The ranker’s
training leverages a fixed trajectory vocabulary and the out-
put from our frozen, pre-trained diffusion model to learn a
scoring function. In inference, we use DDIM to sample the
predictions with only 2 denoising steps. The resulting can-
didates are then evaluated by the trained ranker, which se-
lects the highest-scoring trajectory as the output. We predict

Tf = 8 timesteps and the interval between each time step
is 0.5s. For more details, please refer to the supplementary
material.

4.3. Main Results

Quantitative Comparison. The results presented in Tab. 1
show that ResAD achieves a state-of-the-art performance on
NAVSIM v1 navtest split, with a PDMS of 88.6. Our NC of
98.0 is on par with the highest scores, ensuring a high level
of safety by minimizing collisions. The EP of 82.5 achieved
by our model is a notable result, indicating efficient route
completion. ResAD excels in DAC with a score of 97.3,
outperforming WoTE’s 96.8. This suggests our model has
a stronger adherence to lane boundaries and drivable ar-
eas, a critical aspect of safe and predictable driving behav-
ior. On the more challenging NAVSIM v2 benchmark, the
advantages of ResAD are further extended. As shown in
Tab. 2, ResAD achieves the best or second-best perfor-
mance across almost all extended sub-metrics. Specifically,
ResAD achieves an EPDMS of 85.5, surpassing Diffusion-
Drive by 1.0. It achieves a higher EP score of 88.2 (vs.
87.5), indicating it completes routes more effectively. Fur-
thermore, it shows a significant advantage in DAC with a
score of 97.2 versus 95.9, confirming its ability to generate
more precise trajectories that better adhere to lane bound-
aries. ResAD also exhibits finer vehicle handling, with
slightly better scores in LK.

Qualitative Comparison. A qualitative comparison on
NAVSIM (Fig. 3) highlights the different multimodal strate-
gies of ResAD and DiffusionDrive. While both success-
fully avoid the mode collapse typical of vanilla diffusion,

Table 3. Ablation study on the influence of each component.

Model Description NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ PDMS ↑
M0 Base Model 97.8 94.2 78.1 93.4 100 84.9
M1 M0 + Ranker 98.3 94.3 77.8 94.6 100 85.1
M2 M1 + TRM 97.4 96.6 80.3 93.2 100 86.3
M3 M2 + PRNorm 97.6 96.7 81.4 93.3 100 87.2
M4 M3 + IRP 98.0 97.3 82.5 94.2 100 88.6
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Figure 3. Visual comparison of ResAD. DiffusionDrive relies on a static, context-agnostic vocabulary, often proposing infeasible trajec-
tories (circled in red). In contrast, the proposed ResAD dynamically generates context-aware trajectories by perturbing the ego-vehicle’s
velocity, addressing limitations in static approaches.
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Figure 4. The impact of PRNorm on training efficiency and
performance. This figure shows the loss and mean PDMS curves
for ResAD trained with or without the proposed PRNorm.

their underlying approaches diverge significantly. Diffu-
sionDrive relies on a static, predefined trajectory vocabu-
lary. This context-agnostic approach forces it to generate
many irrelevant or unfeasible options, such as proceeding
straight in a sharp turn scenario (highlighted by red cir-
cles in the figure). Although a subsequent filtering step can
prune these invalid paths, this two-stage process is inher-
ently inefficient. In contrast, ResAD overcomes this limi-
tation through the distinct trajectory modeling shift. This
is achieved through a mechanism of perturbing the ego-
vehicle’s velocity. It directly explores a set of plausible
behaviors, generating trajectories that are inherently con-
sistent with the immediate driving context. A real-world
vehicle demonstration of the proposed method is available
in the supplementary material.

4.4. Ablation Studies

Component Analysis. To validate the efficacy of each pro-
posed component in ResAD, we conduct a comprehen-
sive ablation study, with the results detailed in Table 3.
Our analysis begins by integrating the Multimodal Trajec-
tory Ranker module into the base model, forming M1. It
offers only a slight performance benefit, suggesting poor
multimodal ability as its outputs were mostly limited to a
small area. The introduction of Trajectory Residual Mod-
eling (TRM) significantly boosted performance, with the
DAC metric improving from 94.3 to 96.6 and EP from 77.8
to 80.3, underscoring its role in improving path comple-
tion and safety. In addition, integrating PRNorm enhanced
performance, particularly for EP, which demonstrates its
value in normalizing feature representations and accelerat-
ing training. Finally, incorporating Inertia Reference Per-
turbation (IRP) to enhance multi-modal planning brought
substantial gains, increasing the PDMS score from 87.2 to
88.6. The remarkable effectiveness of IRP is enabled by our
Normalized Residual Trajectory Modeling approach. By
deconstructing the trajectory data, our model can cleverly
foster multi-modality without relying on a fixed trajectory
vocabulary, allowing ResAD to generate a diverse set of
trajectories that are better aligned with the current environ-
mental state.

As shown in Fig. 4, PRNorm enables a significantly
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Table 4. Extending Normalized Residual Trajectory Modeling
to other models.

Model NC ↑ DAC ↑ EP ↑ TTC ↑ C ↑ PDMS ↑
Transfuser 97.7 92.8 79.2 92.8 100 84.0
+TRM 97.7 93.5 80.0 93.5 100 85.2
+PRNorm 98.0 94.2 79.8 93.6 99.9 85.6

TransfuserDP 97.4 93.5 79.0 93.0 100 84.5
+TRM 98.0 93.9 80.2 93.6 100 85.5
+PRNorm 98.2 94.8 79.4 94.2 100 85.8

faster decline in loss compared to the baseline (vanilla min-
max normalization), accelerating model convergence. Fur-
thermore, we calculate the PDMS of the predicted trajectory
every step, which is also higher with PRNorm. It demon-
strates its comprehensive benefits to both training efficiency
and the final performance.

Effect of the Normalized Residual Trajectory Modeling.
To further validate the effectiveness of our proposed Nor-
malized Residual Trajectory Modeling, we conducted ex-
tensive experiments on two heterogeneous planning models.
The results are shown in Tab. 4. Specifically, we evaluated
it on Transfuser, which represents the MLP-based planning
network, and TransfuserDP, which is an extension of Trans-
fuser incorporating a UNet diffusion decoder, representing
the diffusion-based planning network. Our findings con-
sistently demonstrate that the proposed Normalized Resid-
ual Trajectory Modeling significantly enhances trajectory
quality across both types of planning networks. The inte-
gration of the proposed TRM and PRNorm yields notable
improvements across several crucial performance metrics.
For the Transfuser baseline, the PDMS is improved from
84.0 to 85.4 with the help of TRM. With the engagement of
PRNorm, the PDMS is further increased to 85.9. Consistent
improvements are also observed with TransfuserDP. Con-
sistent gains on diverse metrics validate Normalized Resid-
ual Trajectory Modeling as a generalizable and effective
method for improving the safety and reliability of E2EAD
systems.

5. Conclusion

In this work, we revisit the conventional future-trajectory-
prediction paradigm in E2EAD. We argue that directly pre-
dicting a vehicle’s trajectory from sensor data forces mod-
els into a state of causal confusion and creates a planning
horizon dilemma, undermining safety and reliability. Our
proposed framework, ResAD, confronts these challenges by
reframing the learning objective. By first establishing a de-
terministic inertial reference, we provide a strong physical
prior that anchors the prediction task. The model then learns
to predict the residual, i.e., the necessary deviations from
this baseline, which encourages it to focus on the external

causal factors, such as obstacles and traffic rules, that gov-
ern safe navigation. Furthermore, we introduced Point-wise
Residual Normalization (PRNorm) to specifically tackle the
optimization imbalance. PRNorm re-weights the learning
objective at each waypoint, preventing large-magnitude er-
rors from distant, uncertain predictions from dominating the
training process and ensuring that critical, near-term adjust-
ments are properly prioritized. Our state-of-the-art results
on NAVSIM demonstrate that this conceptual shift signifi-
cantly simplifies the learning task and provides a more ro-
bust foundation for future E2EAD systems.
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A. Appendix
A.1. Further Implementation Detail
Following the Transfuser [7] baseline, we incorporate two
auxiliary tasks, 3D object detection and 2D Bird’s-Eye-
View (BEV) semantic segmentation. The agent queries
Eagent derived from the detection task and the BEV fea-
tures EBEV from the segmentation task are subsequently
fed into our proposed diffusion decoder. We utilize weights
pre-trained on the ImageNet dataset to initialize the model.
The LiDAR sensor is configured with a perception range
of 32 meters in the forward, backward, left, and right di-
rections. To incorporate the vehicle’s own state, the ego
status vector includes the current velocity, acceleration, and
the driving command. This vector is processed through a
Multi-Layer Perceptron (MLP) to generate a state embed-
ding, denoted as E.

We employ a two-stage training on ResAD. Initially, the
trajectory planner is trained. This pre-trained planner is then
utilized to generate training data for a subsequent Multi-
modal Trajectory Ranker. The objective of the Ranker is to
identify the optimal trajectory from the multiple candidates
proposed by the planner. For each candidate trajectory, the
Ranker receives the trajectory itself and an associated en-
vironmental feature Eenv as input. Eenv is formed by con-
catenating the agent query Eagent with the corresponding
BEV features EBEV as follows:

Eenv = Concat(Eagent, EBEV). (A1)

We set the learning rate for the Ranker to 1 × 10−4 and
trained the model for 30 epochs.

A.2. Further Qualitative Comparison
In this section, we provide additional visualization results
for challenging scenarios from the NAVTEST split of the
NAVSIM dataset. The red circle encloses the failure cases

of the trajectory predicted by DiffusionDrive. The predic-
tion of our proposed method is depicted by the orange circle
and arrow, which is then projected onto the front-view im-
age for visualization.

Going straight. Fig. A1 highlights the top-1 and top-5 scor-
ing trajectories of DiffusionDrive and the proposed ResAD
in going straight scenarios. In straight-driving scenarios,
the proposed method demonstrably avoids generating tra-
jectories that would lead to a collision with the lead vehicle.
This validates the effectiveness of our Normalized Resid-
ual Trajectory Modeling. To avert a potential collision
implied by the inertial reference, ResAD opts to deceler-
ate or change lanes. Furthermore, even in these straight-
driving situations, ResAD actively explores plausible and
context-aware maneuvers for lane-changing and overtaking.
Turning left. Fig. A2 highlights the top-1 and top-5 scoring

trajectories of DiffusionDrive and the proposed ResAD in
turning left scenarios. As observed, the proposed method
can effectively generate multi-modal trajectories to accom-
plish the left-turn task. Compared to DiffusionDrive, our
approach is more attentive to the current scene. It avoids
the issue of generating scene-irrelevant trajectories, which
can occur when using fixed clustering anchors for the de-
noising process, as DiffusionDrive does.

Turning right. Fig. A3 highlights the top-1 and top-5 scor-
ing trajectories of DiffusionDrive and the proposed ResAD
in turning right scenarios. The proposed method demon-
strates its capability to generate diverse multi-modal tra-
jectories for executing a right turn. Unlike DiffusionDrive,
which relies on fixed clustering anchors for denoising and
thus risks producing scene-irrelevant paths, our method ex-
hibits superior context awareness by avoiding this mecha-
nism.

Furthermore, we have deployed our method, ResAD,
on a real-world vehicle. The real-world demonstration is
included in the supplementary material and our anonymized
code repository. To mitigate potential privacy concerns, the
resolution of these videos has been reduced.
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Figure A1. Qualitative comparison of DiffusionDrive, and ResAD on going straight scenarios of NAVSIM NAVTEST split.
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Figure A2. Qualitative comparison of DiffusionDrive, and ResAD on going turning left of NAVSIM NAVTEST split.
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Figure A3. Qualitative comparison of DiffusionDrive, and ResAD on going turning right of NAVSIM NAVTEST split.
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